Adelic Topology

Riley Moriss

May 7, 2024

1	The Topology of Local Fields	1
2	The Topology on \mathbb{A}	1
3	The Topology on $G(\mathbb{Q})$	2
4	The Topology on $G(\mathbb{A})$	2

Let k be a number field, \mathbb{A} its adele ring and G a connected reductive group over k.

1 The Topology of Local Fields

Given a global field and a place ν we get a local field k_{ν} an an induced metric topology. It has the properties:

- All are locally compact
- For all but finitely many ν , k_{ν} is compact.
- k_{ν}, k_{ν}^* are both totally disconnected

2 The Topology on \mathbb{A}

We have defined the adeles as a topological product, hence the topology is already specified here we give only properties of this topology. Recall that we identify k with its image in A under the inclusion map

 $\alpha \mapsto (\alpha)_{\nu}$

i.e. the constant sequence. With this in mind the adelic topology has the properties:

- Locally compact and Hausdorff
- $\bullet\,$ k is a discrete set in \mathbbm{A}
- k is closed in $\mathbb A$
- \mathbb{A}/k is compact in the quotient topology
- For any finite set of places S k is dense in

$\prod_{\nu \notin S}' k_{\nu}$

the removal of just one place takes us from discrete to dense.

3 The Topology on $G(\mathbb{Q})$

Throughout X, Y, Z are affine schemes of finite type over R where R is a topological ring.

We first identify $X \cong \text{Spec}(R[t_1, ..., t_n]/I)$ then X(R) is naturally the set of points in R^n on which the polynomials in I all vanish. We then give it the subspace topology.

Theorem. This is the unique topology on the R points of X, Y, Z that is

- Functorial: If $X \to Y$ is a morphism of schemes over R then $X(R) \to Y(R)$ is continuous
- Compatible with pullbacks: $(X \times_Y Z)(R) \cong X(R) \times_{Y(R)} Z(R)$; homeomorphic topological spaces.
- Compatible with embeddings: A closed immersion $X \hookrightarrow Y$ is sent to a topological embedding $X(R) \hookrightarrow Y(R)$
- Compatible with R points: $\operatorname{Spec}(R[t])(R) \cong R$ topologically.

Moreover under this topology X(R) forms a topological group, and if R is locally compact, or Hausdorff so is X(R).

4 The Topology on $G(\mathbb{A})$

[Con12] is the reference. Let X be an affine scheme of finite type over a global field F. Then $X \cong$ Spec $(F[t_1, ..., t_n]/I)$ and X(F) is naturally the set of points in F^n on which the polynomials in I all vanish. $X(\mathbb{A})$ is identified with the subset of \mathbb{A}^n where $f : \mathbb{A}^n \to \mathbb{A}$ in I vanish. We give this the subspace topology.

References

[Con12] Brian Conrad. Weil and Grothendieck approaches to adelic points. L'Enseignement Mathématique, 58(1):61–97, June 2012.